
hf. J. Heat hfass Twmfwr. Vol. 12, pp. 15534572. F’ergamon Press 1969. Printed in Gnat Britain 

B” 
B;;, 

e, 
G, 
I VT 

E, 
T’,, 
T CO, 
t *9 

4 

wi, 

RADIATION DOMINANT INTERACTION 

IN GASDYNAMI~S~ 

KUEI-YUAN CHIEN: 

Massachusetts institute of Technology, Aerophysics Laboratory, Cambridge, Massachusetts 

(Received 24 October 1968 and in revisedform 21 April 1969) 

AMtract-The interaction between a dominant radiation field and a flow field is investigated, where the 
time scale for such an unsteady interaction may be quite short compared to a characteristic “flow” time. 
To lowest order there results a radiative cooling process with an uncoupled flow, and an expansion in 
Boltxmaun number then systematically introduces higher order effects. A matched asymptotic expansion 
scheme is required in view of tbe disparate characteristic lengths that exist in different spatial regions. Results 
are presented for the specific example of instantaneous addition of energy to a finite region with one- 
dimensional symmetry (i.e. planar, cyhudrical and spherical). For simplicity the gas is assumed inviscid, 
perfect and in iocal thermodynamic equilibrium, and the differential approximation is used for the radiative 
field. A nuerical scheme was developed to avoid time consuming iterations and results are compared to 
those for an analytic solution limited to the linear case. Both nongmy approximations and upstream 
absorption effects are included. Results indicate a negI~bie upstream heating level, moderate nongrey 
but large curvature and optical thickness effects. Depending on the local balance between emission and 
absorption, the blast shock can be either accelerated or decelerated. Finally, comparison between differential 
approximation and exact formulations for a planar grey case is made. Excellent agreement between the 

present work and a laser experiment indicates the possible energy coupling to be inferred. 

NOMKNCLATURE 

isentropic speed of sound ; 
Planck function ; 
Boltzmann number ; 
material specific internal energy ; 
mean radiative intensity; 
specific intensity ; 
radiative flux vector ; 
core temperature ; 
ambient temperature; 
3 T’JT,; 
radiation “depletion” time ; 
velocity vector ; 
quadrature weights ; 
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location where any radiative dis- 
turbance is negligible, equation 

(19); 
moment weighted absorption co- 
efficients for intensity, equations 
(9) and (10); 
Planck mean abso~tion (emi~ion) 
coefficient ; 
Rosseland mean absorption co- 
efficient ; 
volumetric absorption coefficient ; 
stretched tune parameter, equation 
(36) ; 
similarity variable ; 
photon frequency ; 
stretched spatial variable, equa- 
tion (28); 
material density ; 
Bouguer number ; 
ith order perturbation quantities; 
d/dt ; 
dimensionless variable ; 
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( L ( )s, evaluated at contact surface, shock 
wave ; 

( 1,. spectral quantities ; 

t I*. reference state. 

INTRODUCTION 
THE ROZE of thermal radiation in energy 
transport becomes increasingly significant in 
flows involving large gas temperatures. This 
study is specifically concerned with a case for 
which such radiative transport effects are 
dominant. In terms of the ratio of convective 
to black body radiative energy transfer, 
(puh/~T~),,,. or Boltzmann number, such domi- 
nance implies Bo < 1. Such situations may 
arise, for example, due to the deposit of energy 
in a localized region from energy sources such 
as: 

1. An explosion in the megaton range in air. 
2. The focusing of a laser with a power 

output of hundreds of megawatts in air or 
other gases. 

3. High altitude, high-speed flight of re-entry 
vehicles. 

The possible importance of radiation is 
evident from the following example. An explo- 
sion of yield 20 kt of TNT may generate a 
temperature of 3 x 1O’“K in a 14 m spherical 
mass of air after about low4 s. The correspond- 
ing black body radiative power is 1.13 x 102* 
ergs/s and in view of a total energy content of 
8.4 x 10zo ergs implies a radiative “depletion” 
time of 7.4 x lo- ’ sec. 

Nevertheless, Taylor [2] correctly predicts 
the initial energy content of such blasts on the 
basis of a matching of the time history of the 
shock front to the experimentally observed 
luminous front for times larger than z 2.5 x 
10e4 s. On the other hand, a recent experiment 
in which ionization was induced by means of a 
pulsed laser beam was conducted by Daiber 
and Thompson [3] and indicated a luminous 
front location versus time behavior involving 
an exponent N N 0.21. This is in contrast to 
both the adiabatic [2, 41 and the radiation 

perturbed [S, 61 predictions of 0.4 or 0.5 for 
either spherical or cylindrical geometries. 

La11 and Viskanta [7] previously considered 
the transient radiative cooling of such a spherical 
mass of gas under restrictions of both constant 
pressure at the boundary and absorption co- 
efficient. Steady state problems with coupled 
and dominant radiation transport also have 
been considered by Lick [8], Wang [9] and 
Wang and Tien [lo]. 

The special care required for dominant 
radiation situations is apparent from two 
methods recently extended to radiation gas- 
dynamics. In the method of characteristics 
([l l] Sec. 6.2) there are difhculties associated 
with the characteristics study of large piston 
velocities (which generate very strongly radiating 
shock layers). Similarly, in the method of para- 
metric differentiation [12], convergence proves 
to be increasingly difficult for stronger radiative 
transfer (see e.g. Fig. 9 of [12]). In both cases 
the problem is related to the singular behavior 
in the limit of a radiation dominated interaction. 

Furthermore, the importance of the geo- 
metrical dilutation effect is not at all clear for the 
nonplanar case. Lastly, the time scale involved 
for the achievement of an appreciable upstream 
absorption level is of some interest. Thus the 
specific purposes for the present investigation 
may be stated as follows : 

1. To construct a model suitable for the 
study of the interaction between dominant 
radiative transfer and a flowing fluid. 

2. To study the effect of both geometry and 
gas model on the transient behavior of the flow 
field including upstream absorption effects. 

GOVERNING EQUATIONS 
Consider situations for which T _ 105-lo6 “K 

and densities comparable to that of sea level. 
It may be shown [13] that inviscid, non- 
conducting and nonscattering assumptions are 
reasonable. and that the time dependence 
term in the photon transfer equation is neg- 
ligible. Under such conditions both the radiative 
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pressure and energy density remain small as 
compared to their material counterparts [13]. 
Therefore, the continuity, momentum and energy 
equation are the familiar forms, 

DP 
E + pv.u = 0 

,&+v,=o 

p~+p(V.u)+V.q=O 
and are coupled to state and constitutive 
relations for the gas and the radiative transfer 
equation 

s;i. VI, = cr”(B, - I,) 

required to specify the radiative flux q 

(4) 

q = y j 32I,dBdv. 
0 4n 

(5) 

Some additional simplifying assumptions will 
be made as follows : 

1. The gas is both thermally and calorically 
perfect and in local thermodynamic equilibrium. 

2. The radiant properties of the gas are 
characterized by a specification of both Planck 
and Rosseland mean absorption coefficients. 

3. A differential approximation description 
of the radiative field is adopted (for a majority 
of the study) in place of the exact integral 
formulation ; some checks with the latter will 
be indicated. 

For equilibrium air y = 1.33 is a reasonable 
approximation for the conditions considered 
here [l], and the gas constant varies only by 
a factor of about two [13]. Assumption 2 is a 
suggested improvement over the grey gas 
model [14, 15). Assumption 3 stems from 
curvature effects which imply multiple integra- 
tions (see e.g. [16]) and considerable mathe- 
matical complexity in an exact formulation. 
The differential approximation [17] offers con- 
siderable simplification and has been demon- 

strated to be both qualitatively correct and 
quantitatively of reasonable accuracy for certain 
cases [9, 11, 12, 161. However this approxima- 
tion may not be appropriate to use for problems 
involving nonplanar geometries with walls at 
different temperatures [29-311. In the dif- 
ferential approximation the transfer equation 
(4) is replaced by two moment equations [15,17] 

V.q = 4na,,B - a,,G (6) 

VG = -3a,,q (7) 

where 

G = r JI,dL’dv 
0 4n 

(8) 

is the mean radiative intensity and 

m 

1 
a cl0 = - G ss 

I, dS1 a, dv (9) 
0 4n 

1 
a = - P1 

4 U 
I,,fidQacr,dv (10) 

0 4n 

are intensity and flux averaged mean absorption 
coefficients, respectively [15]. Henceforth we 
shall refer to dimensionless variables, denoted 
by r), relative to reference states, ( )*. For 
example, p = P/P* and all radiative properties 
are normalized by oT, [4]. The reference 
velocity a, is chosen to be the isentropic sound 
speed, R, is a characteristic length, and the 
time t* will be made specific later. For simplicity, 
the tilde notation will be suppressed from now 
on and all equations are to be understood as 
dimensionless. 

From an order of magnitude analysis of the 
energy equation it follows that the appropriate 
time scale when Bo 4 1 is 

Bo 
t* = (a,l~,) = Bo tfh, say (11) 

which may be referred to as the (initial) radiation 
“depletion” time. A modification is required for 
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nonblack radiation, i.e. thin gases. In such SPATIALLY ONE-DIMENSIONAL UNSTEADY 

instances the appropriate choice is EXAMPLES 

Bo Bo 
t* = z(a*,R*) = 7 tflowr 

where r = (a$)* is the Bouguer number, and 
(Be/z) < 1. 

At sufficiently small times (i.e. t* 4 l), the 
rather uniform cooling process for a thin gas 
(in the “outer” region as discussed below) 
shows the present approach to be justified 
a posteriori. From equation (11) it follows that 

r* ‘+ tflow and thus the continuity and mo- 
mentum equations imply that both dp/& and 
aii/dt are -0 (Bo). Chow [18] took note of the 
ap/dt behavior in the numerical work of La11 
and Viskanta [7]. Physically, the implication is 
that unsteady dominant radiation interactions 
result primarily in a cooling process. Flow is 
induced by the radiation as higher order con- 
tributions through the nonhomogeneous cool- 
ing of the hot core. This suggests a systematic 
expansion in powers of Bo such as 

To illustrate the basic ideas developed so far, 
let us consider the following simple model. A 
slab (or circular cylinder, or sphere of gas; i.e. 
a geometry with spatial symmetry) of semi- 
thickness (or radius) R* at a uniform high tem- 
perature To is assumed at t = 0. External to 
such a hot core there is an initially uniform 
region of temperature T’,. Normalizing relative 
to the initial core temperature, we have 

I 

T = T’,/T,(zT,) 
for x 5 1 at t = 0. (13) 

Implicitly such a hot core is generated with 
sufficient rapidity that the density remains 
uniform and the fluid motionless everywhere. 
For example, this may approximate the initial 
state of a “fireball” if the energy addition is 
completed in a time interval appreciably shorter 
than the characteristic flow time, (R/a),. 

Utilizing the expansion procedure, equation 
(12) it follows that p(O) = 1, u(O) = 0 and the 
lowest order energy equation reduces to 

f = f(O) + Bo f”’ + 0 (Bo2) (12) 

where f represents any of the dependent 
variables. Quite general initial conditions can 
be used here to simulate various problems. 
However, without loss of generality, the initial 
conditions for fti), i 3 1, may be taken as 
homogeneous conditions. 

a T’O’ 
(7t + yz(4a’,0’T’0’4 - az:)G(“)) = 0. (14) 

The radiative field to the lowest order is 
governed by 

It is of some interest to compare the several 
time scales involved and their magnitudes 
relative to t*. For example, for 106”K and sea 
level density, the thermalization time for ions 
and electrons is lo-’ s which is one order higher 
than the lifetime for atomic quantum transi- 
tions. The particle collision time is about lo- ’ 2 s. 
These may be compared with an (initial) 
radiation “depletion” time, t*, of 4 x lo-’ s 
based on equilibrium air and R, equivalent to 
a photon mean free path of about 1 m. It 
appears that such high temperature regions are 
collision dominated and close to equilibrium. 

x$ $(&‘o’) = T(qCl(pO)T(‘%4 _ ,~;‘G’o’) (15) 

aG’0’ 
__ = 

ax 
_ 32a(o’ @.2. ill (16) 

Here j = 0, 1 or 2 refers to planar, cylindrical 
or spherical geometries, respectively. a’,“’ = 
aP@(o), T(O)) and similarly for a:) and a::‘. 

For the present model p”)(x, t) = 0 ; that is, 
the density remains constant after inclusion of 
first-order effects. The radiation induced flow 
field is governed by 

au(l) 1 aTto’ 
~ = --- 

at y ax (17) 
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with the initial conditions u(l) = 0 and T”’ 
from equation (13). Symmetry dictates that 
q(O)(x = 0, t) = 0. Finally, for thermodynamic 
equilibrium at x + co, 

T(o) = T’, G’O’ = 4T4 L-0) q(O) = 0. (18a, b, c) 

Optical properties have been based upon 
Traugott’s harmonic mean model [19] for 
ap, and aR = 0.3 ag as suggested in Table 5.2 
of [l]. It is realized that such a representation 
for aR is inappropriate at low temperatures 
(T < 1 eV). 

Three gas models have been employed in 
order to indicate possible spectral effects: grey 
(with mean absorption coefficient a,), semigrey 
[15] and Traugott’s [14]. The latter two models 
provide some improvement in the representa- 
tion at least in the thick gas limit. Finkleman 
and Chien [15] have shown Traugott’s model 
[14] to be incorrect near radiative equilibrium. 
However, the utility of a quasi-isotropy assump- 
tion [lS] (i.e. aW = a,,) has not been docu- 
mentedi” Thus all of the results to be displayed 
must be considered as qualitative, whereas the 
method itself is not restricted to specific absorp- 
tion models. 

Finally, it is to be noted that the characteris- 
tics of equations (14) and (17) are orthogonal to 
those of equations (15) and (16). Thus equation 
(14) may be integratkd in t along x = constant, 
and for each incremental time equations (15) 
and (16) can similarly be integrated in x. In 
practice x + cc may be replaced by some 
x, $- 1, corresponding to the location where 
radiative disturbances are negligible. In essence 
this implies the approximation 

T’O’ N T m for x > x, (19) 

which is physically reasonable if x, is chosen 
to be several photon mean free paths distant 
from the interface (x = 1). In view of the 
anticipated exponential decay of the radiation 
field, x, has arbitrarily been chosen to be 5 

t For some simple problems evidence exists that all 
three mean absorption and emission (Planck) coefficients 
can behave quite differently [32,33]. 

photon mean free paths (based on T,) away. 
Consistent with this is the condition on the 
radiative properties of q(O) and G(O). For such a 
near uniform temperature distribution, in com- 
bination with the equilibrium condition at 
x + cc, equations (18b, c) the radiation field is 
described by [ 1 l] 

G’“‘b,) = 4T: + g,q(O’(x,)\j( w) (20) 

where 
1 0 

Sj = Ko(~~I)/~I(?I) for j = 1 (21) 

rtlhl + 1) 2 

K, and K, are modified Bessel’s functions, and 

fll = TX, ~C3a,,(L) a.,(Tm)l. (22) 

For a grey gas and a plane geometry, equation 
(20) simply reduces to the boundary condition 
derived by Cheng [20].? Physically, a planar, 
uniform gas of infinite thickness corresponds to 
a black body radiating at the gas temperature 
T,. Consistent with the differential approxima- 
tion, the black body condition corresponds to 
equation (20) for j = 0. However, equation (21) 
also includes curvature effects and a representa- 
tion of the nongrey behavior of the gas. For 
q1 $ 1, i.e. large xmr both the cylindrical and 
spherical cases behave essentially planar as 
would be anticipated. Moreover, both the grey 
and semigrey [15] (but not Traugott’s [14, 153) 
gas models imply a, = au1 = ap at T = T, as 
required for radiative equilibrium. 

Clearly the imposed two-point boundary 
value problem requires time-consuming itera- 
tion at each time increment. Moreover the 
conditions for x $ 1 imply a saddle point as 
noted by Sherman [21] and Finkleman [ll]. 
Such difficulties can be avoided upon recasting 
the problem into dual integral equations prior 
to numerical manipulations, and without re- 
striction to the present expansion procedures 

cm 
t With the exception that the factor ,/3 in equation (20) 

is replaced by 2 (see [ 111 also). 
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The method starts from the differential 
approximation for spatially one-dimensional 
problems [e.g. equations (15) and (16)], which 
can be written alternatively as 

x-$(x, t) = z f yj(4a,T4 - a,,G) dy 
YO 

+ xigx,, t) 

G(x, t) = G(x& t) - k j aa,q dy 
xb 

(23 

(24) 

x0 and xb being arbitrary locations. Utilizing 
quadrature approximations for the integrals, 
such as 

i f(x) dx = iiI K f(xJ (25) 

for N points in the interval (0, x) there results 
from equations (23)-(25), 2N - 2 linear alge- 

braic equations for 2N unknowns. Another 
condition is imposed by the symmetry require- 
ment, 4(0, t) = 0. The last relation follows from 
equation (20). Standard matrix inversion tech- 
niques now furnish the solution for the radiation 
field. 

Several points should be noted. First, since 
the original dual integral equations are of the 
Volterra type, a quadrature with uniform 
increments proves to be much easier to apply 
barring use of the crudest trapezoidal rule 
throughout. Secondly, since the accuracy of 
the quadrature formula generally depends on 
higher order derivatives of the integrand in the 
range under consideration, problems involving 
a discontinuity (e.g. the model used here or in 
any flows with shock waves) at x = 1, say, may 
be split into two parts: the intervals 0 < x < 1 
and 1 < x < x,. Within each interval the 

Numerical Solution -..-.. 

Tco= IO-‘; J=O 

FIG. 1. Comparison of interface temperature variations according to several methods 
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Hence when reduction from dual integral equations to 
simultaneous linear algebraic equations may be 
applied separately. Two additional boundary 
(matching) conditions then follow from the 
continuity of G and q at x = 1. Finally, the 
reference points x and xb in equations (23) and 
(24) may be chosen so as to include a maximum 
number of points between the reference and 
field points, so as to improve quadrature 
accuracy. 

x= 1 + O(Bo) (27) 

tl and t, will be of identical order, and this 
occurs in a region of nonuniformity which is 
very small. 

Consequently, close to the interface we are 
led to introduce a new (stretched) spatial 
variable 

A linear model? has been used to check on 
both the numerical scheme and the far field 
assumption, equation (19). Analytic solutions 
were obtained using the Laplace transform 
technique for small times [13]. It is seen (Fig. 1) 
that numerical results do converge to the 
analytic solutions within the latter’s range of 
validity. Furthermore, the far field approxima- 
tion [equations (19)-(21)] does not appreci- 
ably effect the solution near x = 1. 

5 = t-x - ~swlPo (28) 
where n&) is the (foreseen) trajectory of a 
(shock) discontinuity imbedded inside the inner 
region. Within the framework of tl = t, 4 

(K&J 

Encouraged by the results obtained for the 
linear problem, we may now embark on non- 
linear cases. However, it must be noted that the 
regular expansion procedure employed thus 
far will not be valid everywhere due to the 
disparate characteristic lengths existing in dif- 
ferent regions of the problem, as considered 
next. 

xs(t) = 1 + Bo x,,(t) + O(Bo’) (29) 

and thus equation (28) implies 151 N o(1) in 
accordance with equation (27). After transform- 
ing from an (x, t) to a (5, t) description, we may 
again expand the dependent variables in powers 
of Bo as in equation (12). 

Consider now the initial conditions. At t = 0, 
the entire inner region collapses into the single 
point x = 1. This suggests a conical solution 
near t = 0, and hence the utility of introducing 

e = qt. (30) 

The final form of the lowest order governing 
equations written in their characteristic forms 
are now (omitting the superscript zero for 
simplicity) : 

Along 

INNER EXPANSION PROCEDURE 

The above representation with flow induced 
due to nonuniform radiative cooling is not 
uniformly valid if sharp gradients exist initially 
at the boundary of the hot gas region, i.e. 
“close” to the interface, the proper charac- 
teristic length is the local distance from the 
interface in contrast to the overall dimension 
of the hot region R*. The local “flow” time, tl, 
near an interface. .Y = 1, is 

Tdp dT 
-(Y-l)p;l;+-$ 

t, = Ix - 112 = Ix - I[$. 

= - ;(4a,T4 - cc,,G). 

(26) Along 

de 

7 Setting alp = Tw3 and a, = LX,, = 1. z= 
u - k,, - e + JT 

t W,b) 

1559 

(31) 

(32) 
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/dp+*+ 1 dT __- 
YP dt dt - y,/T dt 

* 1-(4c(,T4 - cx,,G) = 0 
0 

(34a. b) 

dq dG 
i!H=i38=o (35) 

Thus the radiation field is not attenuated 
within this region. Simply, to this order the 
inner solution represents a flow with local 
heat addition (subtraction). The global de- 
pendence part of the radiation field, G, is 
prescribed solely by the outer solution. Thus 
with G uniform across the inner region and 
determined by the outer problem for all time. 
the governing equations (31)-(34b) may bc 
solved by the method of characteristics. 

However, in view of the complexity of the 
flow some method to render the problem 
tractable analytically is preferable to a strict 
application of the method of characteristics. 

It can be shown [13] that for t < 1 the 
radiation effects are relatively small. Physically, 
the picture is that of a conical flow perturbed 
by radiation for such small times. Let us intro- 
duce the isentropic speed of sound a z JT and 
consider a time perturbation t w O(E) where 
E 4 1. Introduce also a “stretched” time 

i = t/E (36) 

such that i - O(1). Now consider an expansion 
of the dependent variables 

f = f’O’(8, [) + &$‘I’@, i) + q&Z) (37) 

where f represents p, u or a. Similarly, both the 
shock and the contact surface velocity expres- 
sions are expanded as 

i,,(t) = ap) + &#’ (38) 

a,,(t) = ap + E@‘). (39) 

Here the 2:) and %y) (i = 0,l) are constants to 
be determined from equations (31)-(34) and 
z?,,(t) and kc,(t) are obtained by differentiation 

from the positions of the shock and the contact 
surface 

x,(t) = 1 + Bo x,,(t) (40) 

x,(t) = 1 + Box,,(t). (41) 

Substituting equations (37H39) into (31)-(34b) 
and equating terms of identical powers in 
8, results to the lowest order in the classical 
solution of a planar adiabatic shock tube. The 
shock velocity 2:‘) is governed by 

which may be solved numerically, for example, 
by Newton’s method of successive approxima- 
tions. 

To the next order, we obtain 

d[ d% 
(1 - y)$dp’” + 2da”’ 

r= U’o) _$J’_(j= 
-- 

.f ‘1) s 
(43) 

di d% 
- = a’O’ i _ $0) - (j + a(O) s 

‘1) + &‘I’ + &‘” 
-_ ., r 

f-y' 
w 

where 

f(l) = (y - $g 
i 

$ [&J _ -p<] 

a”’ u’o,p”’ 

+ 0 - p(o)* 
(p - go) - 0) 

P 1 

<yz _ @p _ 2_6”1] t!$ _ - 
p’O’a’O’ 

x [4a~“)a’o)” - a~~)G] 



RADIATION DOMINANT INTERACTION IN GASDYNAMICS 1561 

and does not develop into a shock wave. A similar 
1 dP’o’ 

1 

@) 
T-_- y de p’o’[u”’ - a:“r + a(O)] 

conclusion for the radiation-free case has been 
found by McFadden [22] : no secondary shock 

1 
originates at 8x, in a nonplanar geometry. This 
is clearly invalid for l N 0 (l/s) [23, 241 which 
has not been considered here. 

x (@) - a;o) - fJ f #1) In view of the simple (uniform) base solutions 
everywhere except in the expansion region, 

T- cz {~‘,o’a’o’” 
pqp) 

+ 2u’O’ 

-1 

closed form solutions are obtained by the 
- 

Y 
characteristics method. Crudest numerical ap- 
proximation (without iteration) has been used 
in the expansion region. The detailed form of 

- Q~Z’G}. the solutions are included in [13]. 

The characteristic directions are determined RESULTS AND DISCUSSION 

by the zeroth order quantities. As a result, Five major parameters characterize the prob- 
within the time scale < N O(l), the discontinuity lem, namely y (= 1.33 here), r, j, the ratio of the 
in slope at the tail of the expansion fan (f&r) ambient to the initial core temperature, and a 

- Gmy Gas 
-.-.- Semigmy Gas 
-..-.. Traugatt’s Made1 
Ta= 7 x IO5 ‘K 

r=4 
J=O 

I 

To = 1060K 

FIG. 2 Effects of Bouguer number, core temperature and gas model on the interface 
upstream heating level (planar cases). 
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characteristic describing the gas model. Since approximation. Some caution must be exercised 
a fixed ambient temperature (300°K) was used, since this slow initial upstream heating rate 
variations in the ratio of the ambient to the may eventually change due to the nonlinear 
initial core temperature indicate changes in the dependence uf aP on T. Nevertheless, this does 
latter, which in turn affects the Boltzmann supply further justification for the strong shock 
number and the characteristic time t,. approximation employed by Taylor [2]. 

Shown in Fig. 2 is the precursor heating 
effect on the gas immediately upstream of the 
interIace for a planar case. Due to the absence 
of a curvature effect, the planar case serves as 
an upper bound on the upstream heating level 
for all three geometries considered. It is clear 
that the effect of nongreyness, Bouguer number 
and core temperature are considerable but the 
overall upstream heating effect remains negli- 
gible. Therefore, within the time scale associated 
with a radiation dominant interaction the 
assumption of a uniform upstream tempera- 
ture does indeed appear to be a reasonable 

Figure 3 displays the distributions of the 
heat flux in time. It is clear that nonplanar 
cases possess shorter characteristic times than 
does the planar case, consistent with intuition 
based upon the larger ratio of surface area to 
volume for the former. Note that 4 for j = 1 is 
the largest. However, since the ratio of surface 
area to volume is equal to 6j + 1) per unit 
radius (semi-thickness), the energy left in the 
core will decrease most rapidly for j = 2, as 
one might expect (see below). 

In Fig. 4 are shown the effects on the radiative 
flux q at the interface x = 1. Due to the stronger 

1.4 

1.2 

1.0 

.8 

4 

.6 

i. 
‘\ 
i 
i ( i 
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FIG. 3. Geometrical effect on heat flux at 7 = 1 
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FIG. 4. Effect of Bouguer number and nongrey gas model on the temporal behavior 
of the interface heat flux. 

interior blocking effect for an optically thicker 
gas (larger r), only a thin layer of thickness 
N 0(/r) near the interface is cooled signifi- 
cantly. This results in a shorter characteristic 
time than those applicable for smaller z. For 
r 4 1, the entire volume participates in the 
cooling process but the rate of cooling is quite 
small. Furthermore, for the absorption co- 
efficients model used here, both nongrey repre- 
sentations give practically the same temporal 
behavior of the heat flux. For r = 1 it is seen 
that allowance for nongreyness implies stronger 
radiation, but the qualitative trend remains the 
same. 

Figures 5 and 6 depict the radiation induced 
velocity for different gas models and geometries, 
In our model u = 30. d? Due to a rather 
negligible upstream heating, u(r) proves to be 
independent of the core temperature (i.e. Bo), 
and as a result of the less uniform cooling proves 
to be larger for optically thick and nonplanar 

cases. The apparent nongrey effect again proves 
to behave qualitatively in quite the same way 
as the grey. 

Of some interest is the energy E denoting the 
percentage of energy left in the core 

E=(i+l)jTx’dx 
0 

= 1 - ro’ + 1) j q(1, t)dt (45) 
0 

the latter following from the energy equation, 
and physically simply expressing the initial 
energy minus that radiated away. From Fig. 7 
it is clear that : 

1. For an optically thin gas. E is virtually 
linear in t as a result of the slow rate of change 
of q(1, t) (Fig. 4). 

2. Because of the lesser blocking effect, E 
decreases to lower levels for nonplanar cases. 
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FIG. 5. Geometrical effect on the radiation induced velocity at 5 = 1 

3. Two numerical approximations, utilizing 
either 11 or 21 points inside the hot gas core, 
give good agreement with one another and 
furnish some indication of the reliability of the 
method. 

4. Due to the negligible upstream heating 
(Fig. 2) the precursor effects have little influence 
on the prediction of E. 

5. At a fixed t, as z increases initially from 
small to intermediate values, E drops to a lower 
level because of the stronger emission effect. 

However, with increasing thickness the interior 
blocking confines the cooling process to a thin 
layer - 0(1/z) near the interface, and the final 
E “asymptote” is above the minimum. 

Figure 8 depicts again the curvature effect 
at z = 1, which is more pronounced than for 
z = 0.1 (Fig. 7). The higher flux for a nongrey 
gas implies lesser E values. 

Recall that the inner problem consists of a 
similarity solution of the shock tube type 
perturbed by radiation. For air at T = 7 x 10’ 
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T = 0.1 

X 

FIG. 6. The radiation induced velocity at the interface: Bouguer number and 
gas model effects 

and 106”K, aLo) = 0.639 and 2:” = 0.548 while 
$1, and $1’ can be of either sign. Figure 9 
shows the effect of radiation on the pressure 
profile. For z = 2 (j = l), the shock layer is 
sufficiently thick to absorb more energy than 
is emitted away. For r = O-5 (j = 1 or 2), on 
the other hand, the shock layer is sufficiently 
thin that emission dominates. The result is a 
pressure increase (decrease) in the shock layer 
for the thicker (thinner) case. Due to the lower 
ability to absorb radiation when j = 2, the 

pressure drop is greater. Within the expansion 
fan the pressure decreases with time due to the 
continual loss of energy but due to the much 
higher temperature levels of the “driver” gas 
the drop for both cylindrical and spherical 
cases proves to be almost identical. Since the 
thin layer is far from radiative equilibrium, the 
thicker gas involves a larger pressure drop. 
Due to energy addition (removal), the shock 
layer actually expands (contracts). There results 
an accelerating (declerating) shock wave while 
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simultaneously the contact surface is retarded approximation, the difference between the ap- 
(accelerated). A similar situation has been proximate and the exact formulations is expected 
noted by Magee and Hirschfelder [25] in that to be small when close to emission dominance. 
the blast (shock) wave is strengthened due to Due to the rather low shock layer temperature 
the presence of NO, (strong radiation absorbing (as compared to the driver gas) obtained from 

-6 i8 0 J=I,T:2 7 x IO5 
3.30 0 J=l,r-0.5 

To : 

t : 
4 00 q 

10-2 
J=2,rz05 Y= 133 

Grey Gas 

FIG. 9. Pressure distribution in the inner region : Geometric and Bouguer number 
effects. 

gas) near the periphery at the later stage of an 
explosion (t - 10m2 s). 

A comparison of fL1’ as predicted by both 
the differential approximation and an exact 
solution for the planar. grey case is presented in 
Fig. 10, and shows the ratio to be about 0.4 at 
z = 10d2. Since it is the absorption term that 
is approximated by means of the differential 

the shock tube solution (0.0664), the shock 
layer is emission dominated only for r 7 lop7 
and the ratio of z$” predicted by the two 
methods does approach unity at such low values. 
However, the continuum approach may be 
justified only for T 2 10P2. For r 2 lo-’ 
G = 0) the shock layer is locally absorbing 
more energy (from the much hotter driver gas) 
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than is being emitted away. Thus this is essenti- of the core which results in a negligible energy 
ally a comparison of the mean intensity G. loss and permits similarity to be assumed. 
Overall, then a discrepancy of about two exists On the other hand, in the experiment con- 
towards the optically thin end, and a vanishingly ducted by Daiber and Thompson [3] the ga: 

r = 1.33 

Ta=7x105’K 

J =0 

Grey Gas 

IC 

IO- 
10-c IO-' I IO 

T 

FIG. 10. Comparison of differential approximation and exact solution results for the radiation induced shock 
wave acceleration (planar case, grey gas). 

small error for z >, 1. Similar conclusions have 
been reported by Kulander [26]. 

CONCLUDING REMARKS 

We may consider the physical phenomena 
responsible for the earlier observed results 
mentioned in the introduction. As shown earlier 
(Fig. 2), the extrapolated upstream heating level 
for the present time scale is negligible when 
compared to that of the hot core. Furthermore, 
for the experimental example considered by 
Taylor in his blast wave analysis, the gas 
proves to be optically thick (Z N 103). Thus 
it is the strong blocking effect in the interior 

was optically thin ; for such an emission 
dominated ionized gas region a considerable 
amount of energy is lost by radiation and 
similarity fails. A detailed evaluation of the 
properties within such an ionized region im- 
mediately after the laser cut-off is beyond the 
present analysis. However, we may estimate the 
mean properties existing in such a “blob” of 
hot gas. Iteration (equilibrium air, y = 1.33) 
results in a hot core temperature of N 6.5 x 
1O’“K based on the radiation supported deto- 
nation wave theory proposed originally by 
Ramsden and Savic [27] (see also [l], Chap- 
ter 5). Alternatively, a constant volume heat- 
ing model results in a mean temperature of 
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65 x 105”K. The agreement is viewed as 
some evidence for the formation of a “fireball” 
due to the optical breakdown of air. A similar 
discovery of a “fireball’ behavior existing in a 
laser product micro-explosion has also been 
found by Askaryan et al. [XX]. 

If the location of the luminous fronts at the 
laser-off time to is x0, then experimental cor- 
relation [3] gives (x/x0) = (t/to)N with N = O-21. 
For times su%ciently near t,, for which the 
present radiation perturbed inner solution is 
valid, this can be expanded to allow a direct 
comparison with the shock wave trajectory, i.e. 

$0) = .N!F 
s Bo r. w 

$1, _ w - 1) t* 2 
s - 

0 Bo < 
(47) 

From the de~nition of t,, equation (ll), and 
identification of x0 with R,, we obtain 

.p, = N R, 
s ( ) a*to 

(48) 

2(l) = N(N - 1) Bo at S 
( 1 

(49) 
*o 

Clearly in the above relations, R, and t,, 
are experimentally determined, whereas a, and 
Bo are calculated from the experiniental condi- 
tions. To generalize the calculation, we make 
use of the radiation supported detonation wave 
theory, in which, &/to is related to the velocity 
of the “shock” at to, Do, by R Jto = clDo where 
ci = 1.67. Furthermore, since the theory im- 
plies Do/u, = (y + I),$, then 

(51) 

With N = O-21, To = 7 x 105”K and y = 1.33, 
the experimentally observed values are ai’) = 

0.61 and $l) = -0*087-k, which may be com- 
pared with the “shock tube” theory result, 
a$‘) = 0.64. From the harmonic model [19] 
for up, R - O-4 cm corresponds to z - 3 x 10- 3 
and results in kir) = -0.023. However, the 
harmonic model differs from the available data 
by anywhere from three to one orders of 
magnitude. For z = 3 x lo- 2 : Ay) = -0.23 ; 
and for r = 10T2 : go) = -0.075. The above 
calculations are for j 2 1 and 2 and virtually all 
gas models. Note that for nonplanar geometries, 
G(1, t) e 1 follows from equations (20) and 
(21), which utilizes the equilibrium condition at 
x -+ ‘~j, equations (18b, c). 

In view of the asymmetries existing in the 
experiment, consideration of a reduction of 
R, by a factor of one-half brings the upper 
bound to z = 1.5 x lo-‘, corresponding to 
iii) = -0.11. 

In view of uncertainties in the “initial” 
conditions at t = to as well as ass~ptions made 
herein, the experiment of Daiber and Thompson 
appears consistent with the present model 
takingr - lo-‘. Physically, due to the extremely 
low ability to absorb radiation, the shock layer 
is cooled by the local (do~nant) emission 
process and results in a decelerating shock wave 
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R6snm&-L’interaction entre un champ de rayonnement dominant et un champ d’ecoulement est ttud&e, 
1’6chelle des temps pour une telle interaction instationnaire pouvant Btre tr&s courte par rapport a un temps 
“d’&coulement” caracttristique. A I’ordre le moins elev6, il se prod& un processus de refroidissement par 
rayonnement avec un ecoulement non couple, et un developpement en nombre de Boltzmann introduit 
syst&natiquement des effets d’ordre plus 6lev6. Un schema de dtveloppement asymptotique raccordb 
est necessaire &ant don& les longueurs caractCristiques disparates qui existent darts dilI6rentes r&ions 
spatiales. Les resultats sont pr&ent& dam I’exemple sp&ciIique de l’addition instantan6e d’energie a 
une region fmie avec une sym6trie unidim~ensionne~e (c&t-a-dire, plane., cylindrique et spherique). 

Pour simplifier, le gaz est suppose non visqueux, parafait et en equilibre thermodynamique local, et 
l’approximation diff6rentielle est employee pour le champ de rayonnement Un schema numerique a tte 
&labor& pour eviter des iterations qui prennent du temps et les r&hats sont compares B ceux dune solution 
analytique restreinte au cas lin6aire. Les approximations d’un gas non gris et lea effets d’absorption amont 
sont comprises Les r&hats indiquent un niveau de chauffage amont n&ligeable, des effets mod&&s de 
l’hypothese d’un gas non gris, mais des effets fmportants de la courbure et de I’dpaisseur optique. Selon le 
bilan local entre l’bmission et l’absorption, le choc d’explosion peut &re soit a&l&e soit d&c&r& Enfin, 
on compare l’approximation di&rentielle et les formulations exactes pour un cas gris plan L’excellent 
accord entre le travail actuel et une experience avec un laser permet de conclure a la possibilite du couplage 

d%nergie. 
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%usammenfassuug-- Es wird die Wechselwirkung zwischen einem starken Strahbmgsfeld und einem 
Stromungsfeld untersucht, wobei das Zeitmass fiir solch eine nichtstation%re Wechselwirkung sebr kurz 
sein midge im Vergleich zu einer charakteristischen Striimungszeit. In erster Nherung ergibt sich ein 
K~hlun~pro~ss durch Strahhmg mit einer un~inNussten Stromung une eine Ausdehnung auf die 
Boltzm~n-Zap fiihrt dann systematisch Effekte hoherer Grdnung ein. Es wird ein angepasstes asyme- 
trisches Expansionsschema gefordert, angesichts der unterschiedhchen charakteristischen Langen in 
den verschiedenen Zonen. Dabei werden Ergebnisse angegeben fur den speziellen Fall einer plotzhchen 
Energiezufuhr in einer endlichen Zone mit eindimensionaler Symmetrie (dh. ebene Zylinder- oder Kugel- 
symmetrie). Zur Vereinfachung wird das Gas ah reibungsfrei, ah vollkommen und im thermodynamischen 
Gleichgewicht angenommen. Es wird weiterhin die differentielle Approximation fIir das Strahhtngsfeld 
benutzt. Es wird ein numerisches Schema entwickelt, urn zeitraubende Iterationen zu vermeiden, Die 
Ergebnisse wurden verghchen mit jenen aus einer analytischen L&sung, die allerdings auf den linearen 
Fall beschrankt war. Dabei sind sowohl die nichtgrauen Naherungen ais such die Effekte der Absorption 
stromaufw&ts berticksichtigt. Die Ergebnisse zeigen eine vemachlhsigbam Aufheizung stroaufwiirts 
mhsige Effekte des nichtgrauen Gases, aber grosse Auswirkung der Kriimmung und der optischen Dicke. 
In Abhtigigkeit vom lokalen Gleichgewicht zwischen Emission und Absorption, kann der Stoss entweder 
beschleunigt oder verzijgert werden. Schliesshch wurde ein Vergleich zwischen der differentiellen Ap- 
proximation und den exakten Formeln ftir den ebenen Fall in einem grauen Medium durchgefbhrt. Die 
ausgezeichnete ~bereinstimmung zwischen der Arbeit und einem Laser-Experiment zeigt, dass auf 

miighehe Energie-Kop~lung geschlossen werden muss. 

AHHOTaqasI-MCCneAyeTcR B3aflMOReikTBt'ie OCHOBHOrU JIyYtiCTOI'O tIOJIFI C tlU.Zt!Al IIOTOI-E~, 

f<Ori&aMaClLITali BpeMeHIl AJIH HeCTaqHOHapHOrO B3atiMOfietiCTBMR O%H'b MaJI II0 CpaBHeHtW C 

BpMeHHOt XapaHTepttCTEHOfi “IIOTOKa". B nepBOM rIpn6JItmHHH yYtITbII3aeTcH JiyYtlCTOe 

0~~a~~eH~e 0TphtB~or0 noTofFa, ayBe~~YeHt~e Ytrcna IjojIbqMafia Ct~cTen~aTt~Yec~t~ npt4~0~~~ 

~3~~e~TaM tmcmbix ~0p~~~oM. Tafs fsaK ~apa~Tep~~cT~~~~K~e ~nlrttnr pa3~~YHbIx yqacTftoB 

npocTpamTsa wecotiswepams, TpefiyeTmi cne~atpmec~~ax acct4mToTffYecfwi cxeMa pacnrti- 

peHkiR. ~pMl30RflTCR pe3yJIbTaTbI RJIFI YBCTHOI‘O CJlyYW Mf'HOBeHWOPU IIOTOHa 3HeplWfI Ii 

0,'paHHYeHHOiir CHMMeTptfYHOti 06JIaCTH (ItJIaCTHHa, 11HJItIH~p, C#epa). &IIH IIpOCTOThI rik:l 

CYHTBIOT HeBFIBfWM, HReaZbHbIM IT IIaXOARIQYIMCW B .EOKaJIbHOM TepMO~HHa#tWeCHOM 

paBHoBecIm; AyYRCTOe IlOJIe OIIACbIBaeTCR anIlpofictIMllpOB3HrraJMa ~Yl@+epeffL&tWIhHhI.Mtl 

ypaBfiefit4mm. Ro ti36exafitie nofwopemit paweTa pa3pa60Tawa YtmreHfiaR exekfa, a 

pe3yabTaTbl CpaB~~Ba~TC~ c aHa~~T~Ye~~1~~ pe[UeHtfe~~ AJ?R ~~He~~iOr0 CqYaa. fs 3aAaYf 

~Y~T~BaeTC~ a~~po~c~~~a~t~~ ;rm ~ecep~xra30~ ~3~~eKT~ nor~o~eH~~ ftsepx no iioTofiy. 

OKaaaxocb, YTO narpetl BB~~X no noTofry npeHe6pemmo Maa, a fraw5ojIbmee rw:s~eficTBtw 

OfEa3bIBaIOT KpPIf_Qi3Ha M OIITHYeCKaR TOZI~HHa. R DaBLlCIIMOCTH OT JIOK3,?bHOPO (‘UOTf101UeHtIfI 

3MHCCtIII I4 IIOI-JSIO~efltfJI, MOPKHO yCKOptSTb tIJIH3aTO~M03MTb ynapHyfO ROnfry. R :I:IKJIMYBALIlI 

CpaBHHBaeTCR npaftftTarr annpofmma~~t4~ c TOYH~IM peurefmeM AnfI cnyYas 11JIU~'tiO~O ceporo 

Tena. Bemwo~enHOe COOTBeTCTHPIe MeFHZy EIOJIyYeHtIhIMH pe3ynbTaTZIMtl tf 3fWrlepMMefITAMII 

C aa3epOM nOSBO2EteT CAeJIaTb BhIBOA U Cy4eCTBOBaH~~I ~IIep~eTt~Ye~~~~~ ~‘Bf?:%I. 


