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Abstraci—The interaction between a dominant radiation field and a flow field is investigated, where the
time scale for such an unsteady interaction may be quite short compared to a characteristic “flow” time.
To lowest order there results a radiative cooling process with an uncoupled flow, and an expansion in
Boltzmann number then systematically introduces higher order effects. A matched asymptotic expansion
scheme is required in view of the disparate characteristic lengths that exist in different spatial regions. Resuits
are presented for the specific example of instantaneous addition of energy to a finite region with one-
dimensional symmetry (i.e. planar, cylindrical and spherical). For simplicity the gas is assumed inviscid,
perfect and in local thermodynamic equilibrium, and the differential approximation is used for the radiative
field. A numerical scheme was developed to avoid time consuming iterations and results are compared to
those for an analytic solution limited to the linear case. Both nongrey approximations and up-stream
absorption effects are included. Results indicate a negligible upstream heating level, moderate nongrey
but large curvature and optical thickness effects. Depending on the local balance between emission and
absorption, the blast shock can be either accelerated or decelerated. Finally, comparison between differential
approximation and exact formulations for a planar grey case is made. Excellent agreement between the
present work and a laser experiment indicates the possible energy coupling to be inferred.

NOMENCLATURE

a isentropic speed of sound; X oo location where any radiative dis-
> . ? turbance is igi i
B, Planck function: o) ce negligible, equation
Bo Boltzmann number; ’ . .
. ’ material specific in témal energy: gy moment weighted absorption co-
i e . ’ efficients for intensi i
G, mean radiative intensity ; 9) and (10); intensity, equations
I, specific intensity; ’ .
. .. x P issi
q, radiative flux vector; L ng?ficé;;l?n absorption (emission)
T, core temperature ; ’ .
. o -
T, ambient temperature; ® fﬁgzg;l;‘?d mean absorption co
T, =T /T; i . .
. a dia?i/ 01‘1’ . depletion” time: o, volumetric absorption coefficient ;
t 33 13 3 :
u velocity vector: ¢, (s;ge)t‘ched time parameter, equation
Yo quadrature weights; 6 simiiarity variable;
k] 3
T The author wishes to acknowledge the helpful dis- vs photon frequency;
cussions, advice and encouragement of Prof. J. R. Baron ¢, stretched spatial variable, equa-
during the course of this investigation. He is also indebted tion (28);
to the other members of his thesis committee, Professors .y .
L. Trilling and J. L. Kerrebrock, for their constructive o material densﬁy’
criticism. The work was sponsored by the U.S. Air Force, T, Bouguer number;
Office of Scientific Research under Contract No. AF49(638)- ( )(i), ith order perturbation quantities;
1621. . ;
I Research Assistant, Aerophysics Laboratory, Depart- ), d/de;
ment of Aeronautics and Astronautics. . ), dimensionless variable X

1553



1554

evaluated at contact surface, shock
wave;

spectral quantities;

reference state.
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INTRODUCTION
THE ROLE of thermal radiation in energy
transport becomes increasingly significant in
flows involving large gas temperatures. This
study is specifically concerned with a case for
which such radiative transport effects are
dominant. In terms of the ratio of convective
to black body radiative energy transfer,
(puh/5T#),;. or Boltzmann number, such domi-
nance implies Bo < 1. Such situations may
arise, for example, due to the deposit of energy

in a localized region from energy sources such
as:

1. An explosion in the megaton range in air.

2. The focusing of a laser with a power
output of hundreds of megawatts in air or
other gases.

3. High altitude, high-speed flight of re-entry
vehicles.

The possible importance of radiation is
evident from the following example. An explo-
sion of yield 20 kt of TNT may generate a
temperature of 3 x 10°°K in a 14 m spherical
mass of air after about 10™* s. The correspond-
ing black body radiative power is 1'13 x 10?8
ergs/s and in view of a total energy content of
84 x 102° ergs implies a radiative “depletion”
time of 7-4 x 1077 sec.

Nevertheless, Taylor [2] correctly predicts
the initial energy content of such blasts on the
basis of a matching of the time history of the
shock front to the experimentally observed
luminous front for times larger than = 2:5 x
10~ s. On the other hand, a recent experiment
in which ionization was induced by means of a
pulsed laser beam was conducted by Daiber
and Thompson [3] and indicated a luminous
front location versus time behavior involving
an exponent N ~ 0-21. This is in contrast to
both the adiabatic [2, 4] and the radiation
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perturbed [5, 6] predictions of 0-4 or 0:5 for
either spherical or cylindrical geometries.

Lall and Viskanta [7] previously considered
the transient radiative cooling of such a spherical
mass of gas under restrictions of both constant
pressure at the boundary and absorption co-
efficient. Steady state problems with coupled
and dominant radiation transport also have
been considered by Lick [8], Wang [9] and
Wang and Tien [10].

The special care required for dominant
radiation situations is apparent from two
methods recently extended to radiation gas-
dynamics. In the method of characteristics
([11] Sec. 6.2) there are difficulties associated
with the characteristics study of large piston
velocities (Which generate very strongly radiating
shock layers). Similarly, in the method of para-
metric differentiation [12], convergence proves
to be increasingly difficult for stronger radiative
transfer (see e.g. Fig. 9 of [12]). In both cases
the problem is related to the singular behavior
in the limit of a radiation dominated interaction.

Furthermore, the importance of the geo-
metrical dilutation effect is not at all clear for the
nonplanar case. Lastly, the time scale involved
for the achievement of an appreciable upstream
absorption level is of some interest. Thus the
specific purposes for the present investigation
may be stated as follows:

[. To construct a model suitable for the
study of the interaction between dominant
radiative transfer and a flowing fluid.

2. To study the effect of both geometry and
gas model on the transient behavior of the flow
field including upstream absorption effects.

GOVERNING EQUATIONS

Considersituationsforwhich T ~ 10°-10°°K
and densities comparable to that of sea level
It may be shown [13] that inviscid, non-
conducting and nonscattering assumptions are
reasonable, and that the time dependence
term in the photon transfer equation is neg-
ligible. Under such conditions both the radiative
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pressure and energy density remain small as
compared to their material counterparts [13].
Therefore, the continuity, momentum and energy
equation are the familiar forms,

Dp
2P V=0 1
D Fev-u (1)
Du
P o+ VP @
D
p5§+p(v.u)+v.q=o 3)

and are coupled to state and constitutive
relations for the gas and the radiative transfer
equation

Q.VI,=a(B,— 1) @)
required to specify the radiative flux g

o

q= | [ Q1,dQdv.

0 4n

()

Some additional simplifying assumptions will
be made as follows:

1. The gas is both thermally and calorically
perfect and in local thermodynamic equilibrium.

2. The radiant properties of the gas are
characterized by a specification of both Planck
and Rosseland mean absorption coefficients.

3. A differential approximation description
of the radiative field is adopted (for a majority
of the study) in place of the exact integral
formulation; some checks with the latter will
be indicated.

For equilibrium air y = 1-33 is a reasonable
approximation for the conditions considered
here [1], and the gas constant varies only by
a factor of about two [13]. Assumption 2 is a
suggested improvement over the grey gas
model [14, 15]. Assumption 3 stems from
curvature effects which imply multiple integra-
tions (see e.g. [16]) and considerable mathe-
matical complexity in an exact formulation.
The differential approximation [17] offers con-
siderable simplification and has been demon-
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strated to be both qualitatively correct and
quantitatively of reasonable accuracy for certain
cases [9, 11, 12, 16]. However this approxima-
tion may not be appropriate to use for problems
involving nonplanar geometries with walls at
different temperatures [29-31]. In the dif-
ferential approximation the transfer equation
(4)is replaced by two moment equations [15,17]

V.q = 4no,B — «,G (6)
VG = —3ua,,q Y]
where
G=| [1,dQdv 8)
0 4n
is the mean radiative intensity and
1
gy = G I,dQo,dv 9
0 4n
1 ~
a,, =—T[1v9d9avdv (10)
1 0 4n

are intensity and flux averaged mean absorption
coefficients, respectively [15]. Henceforth we
shall refer to dimensionless variables, denoted
by (), relative to reference states, ( ),. For
example, P = P/P, and all radiative properties
are normalized by o¢T, [4]. The reference
velocity a, is chosen to be the isentropic sound
speed, R, is a characteristic length, and the
time t, will be made specific later. For simplicity,
the tilde notation will be suppressed from now
on and all equations are to be understood as
dimensionless.

From an order of magnitude analysis of the
energy equation it follows that the appropriate
time scale when Bo < 1is

Bo

" = @Ry

= Bo Letows SAY (11)

which may be referred to as the (initial) radiation
“depletion” time. A modification is required for
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nonblack radiation, ie. thin gases. In such
instances the appropriate choice is

- Bo _Bot
*‘T(a*/R*)ﬁ T flow>

where t = («,R), is the Bouguer number, and
(Bo/t) < 1.

At sufficiently small times (ie. t, < 1), the
rather uniform cooling process for a thin gas
(in the “outer” region as discussed below)
shows the present approach to be justified
a posteriori. From equation (11) it follows that
ty < tgow and thus the continuity and mo-
mentum equations imply that both dp/dt and
0u/ot are ~0 (Bo). Chow [18] took note of the
Jp/ot behavior in the numerical work of Lall
and Viskanta [7]. Physically, the implication is
that unsteady dominant radiation interactions
result primarily in a cooling process. Flow is
induced by the radiation as higher order con-
tributions through the nonhomogeneous cool-
ing of the hot core. This suggests a systematic
expansion in powers of Bo such as

=79+ Bo f® 4+ 0(Bo? (12)
where f represents any of the dependent
variables. Quite general initial conditions can
be used here to simulate various problems.
However, without loss of generality, the initial
conditions for f® i> 1, may be taken as
homogeneous conditions.

It is of some interest to compare the several
time scales involved and their magnitudes
relative to t,. For example, for 10°°K and sea
level density, the thermalization time for ions
and electrons is 109 s which is one order higher
than the lifetime for atomic quantum transi-
tions. The particle collision time is about 102 s.
These may be compared with an (initial)
radiation “depletion” time, t,, of 4 x 1077 s
based on equilibrium air and R, equivalent to
a photon mean free path of about 1 m. It
appears that such high temperature regions are
collision dominated and close to equilibrium.

KUEI-YUAN CHIEN

SPATIALLY ONE-DIMENSIONAL UNSTEADY
EXAMPLES

To illustrate the basic ideas developed so far,
let us consider the following simple model. A
slab (or circular cylinder, or sphere of gas; i.c.
a geometry with spatial symmetry) of semi-
thickness (or radius) R, at a uniform high tem-
perature T;, is assumed at ¢ = 0. External to
such a hot core there is an initially uniform
region of temperature T’ . Normalizing relative
to the initial core temperature, we have

1

T = {T;/TO(ETOO) for xs1 att=0 (13)
Implicitly such a hot core is generated with
sufficient rapidity that the density remains
uniform and the fluid motionless everywhere.
For example, this may approximate the initial
state of a “fireball” if the energy addition is
completed in a time interval appreciably shorter
than the characteristic flow time, (R/a),.

Utilizing the expansion procedure, equation
(12), it follows that p'@ = 1, 4/ = 0 and the
lowest order energy equation reduces to

(0)

+ 9140 TO" — OGO = 0.  (14)

The radiative field to the lowest order is
governed by

(xq?) = 14O TO" — aDG®)  (15)

1
x0 Ox
aG(O)

ox

= —3taP¢q. (16)
Here j = 0, 1 or 2 refers to planar, cylindrical
or spherical geometries, respectively. of? =
1, (p®, T®) and similarly for o and «f>.

For the present model p™)(x, t) = 0; that is,
the density remains constant after inclusion of
first-order effects. The radiation induced flow
field is governed by

ou't)

18T )
T Ty an
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with the initial conditions u'"’ = 0 and T®
from equation (13). Symmetry dictates that
q®(x = 0,t) = 0. Finally, for thermodynamic
equilibrium at x — o0,

TO =T, GO=4T% ¢9=0 (i8ab,0)

Optical properties have been based upon
Traugott’s harmonic mean model [19] for
o, and ag = 03 a, as suggested in Table 52
of [1]. It is realized that such a representation
for ag is inappropriate at low temperatures
(T <1eV).

Three gas models have been employed in
order to indicate possible spectral effects: grey
(with mean absorption coefficient a,), semigrey
[15] and Traugott’s [14]. The latter two models
provide some improvement in the representa-
tion at least in the thick gas limit. Finkleman
and Chien [15] have shown Traugott’s model
[14] to be incorrect near radiative equilibrium.
However, the utility of a quasi-isotropy assump-
tion [15] (ie. o, = a,,) has not been docu-
mented.T Thus all of the results to be displayed
must be considered as qualitative, whereas the
method itself is not restricted to specific absorp-
tion models.

Finally, it is to be noted that the characteris-
tics of equations (14) and (17) are orthogonal to
those of equations (15) and (16). Thus equation
(14) may be integratdd in ¢ along x = constant,
and for each incremental time equations (15)
and (16) can similarly be integrated in x. In
practice x — o0 may be replaced by some
X, > 1, corresponding to the location where
radiative disturbances are negligible. In essence
this implies the approximation

TO ~ T, for x> x, 19)

which is physically reasonable if x_ is chosen
to be several photon mean free paths distant
from the interface (x =1). In view of the
anticipated exponential decay of the radiation
field, x, has arbitrarily been chosen to be 5

t For some simple probiems evidence exists that all
three mean absorption and emission (Planck) coefficients
can behave quite differently {32, 33].
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photon mean free paths (based on T,) away.
Consistent with this is the condition on the
radiative properties of ¢ and G. For such a
near uniform temperature distribution, in com-
bination with the equilibrium condition at
x — o0, equations (18b, c) the radiation field is
described by [11]

GOx,) = 4T%, + g,4%x.) \/(%fx_((%)) 20)
where
1 0
gj= Kon)/Ky(ny) for j=<1 (21)
iy + 1) 2

K, and K are modified Bessel’s functions, and

'Il = Txoo \/[3aao(Tco) aal(Teo)]' (22)

Fora grey gas and a plane geometry, equation
(20) simply reduces to the boundary condition
derived by Cheng [20]f Physically, a planar,
uniform gas of infinite thickness corresponds to
a black body radiating at the gas temperature
T,. Consistent with the differential approxima-
tion, the black body condition corresponds to
equation (20) for j = 0. However, equation (21)
also includes curvature effects and a representa-
tion of the nongrey behavior of the gas. For
7, > 1, ie. large x,, both the cylindrical and
spherical cases behave essentially planar as
would be anticipated. Moreover, both the grey
and semigrey [15] (but not Traugott’s [14, 15])
gas models imply «,) = «,, = a, at T = T, as
required for radiative equilibrium.

Clearly the imposed two-point boundary
value problem requires time-consuming itera-
tion at each time increment. Moreover the
conditions for x > 1 imply a saddle point as
noted by Sherman [21] and Finkleman [11].
Such difficulties can be avoided upon recasting
the problem into dual integral equations prior
to numerical manipulations, and without re-
striction to the present expansion procedures

[13].

T With the exception that the factor /3 in equation (20)
is replaced by 2 (see [11] also).
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The method starts from the differential
approximation for spatially one-dimensional
problems [e.g. equations (15) and (16)], which
can be written alternatively as

xiq(x, 1) = 7 | yi(4a, T* — 0,,G)dy
70

+ xéq(xo, t) (23)

G(x, 1) = G(xp, t) — 3t | a,,qdy (24)
Xo and X being arbitrary locations. Utilizing
quadrature approximations for the integrals,
such as

b N

§f)dx = .ZI W, f(x) (25)
for N points in the interval (0, x) there results
from equations (23)+25), 2N — 2 linear alge-

KUEI-YUAN CHIEN

braic equations for 2N unknowns. Another
condition is imposed by the symmetry require-
ment, ¢(0, t) = 0. The last relation follows from
equation (20). Standard matrix inversion tech-
niques now furnish the solution for the radiation
field.

Several points should be noted. First, since
the original dual integral equations are of the
Volterra type, a quadrature with uniform
increments proves to be much easier to apply
barring use of the crudest trapezoidal rule
throughout. Secondly, since the accuracy of
the quadrature formula generally depends on
higher order derivatives of the integrand in the
range under consideration, problems involving
a discontinuity (e.g. the model used here or in
any flows with shock waves) at x = 1, say, may
be split into two parts: the intervals 0 < x < 1
and 1< x < x,. Within each interval the

1.0

Laplace Transf
Solution

Numerical Solution —--——--

To= 102 J=0

3

T{x=1)

— 5
—-—- 4 Term Exponsion T~
3

s
—————

Rell
.01

N I
rt

FiG. 1. Comparison of interface temperature variations according to several methods.
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reduction from dual integral equations to
simultaneous linear algebraic equations may be
applied separately. Two additional boundary
(matching) conditions then follow from the
continuity of G and ¢ at x = 1. Finally, the
reference points x and x;, in equations (23) and
(24) may be chosen so as to include a maximum
number of points between the reference and
field points, so as to improve quadrature
accuracy.

A linear modelt has been used to check on
both the numerical scheme and the far field
assumption, equation (19). Analytic solutions
were obtained using the Laplace transform
technique for small times [13]. It is seen (Fig. 1)
that numerical results do converge to the
analytic solutions within the latter’s range of
validity. Furthermore, the far field approxima-
tion [equations (19)-21)] does not appreci-
ably effect the solution near x = 1.

Encouraged by the results obtained for the
linear problem, we may now embark on non-
linear cases. However, it must be noted that the
regular expansion procedure employed thus
far will not be valid everywhere due to the
disparate characteristic lengths existing in dif-
ferent regions of the problem, as considered
next.

INNER EXPANSION PROCEDURE

The above representation with flow induced
due to nonuniform radiative cooling is not
uniformly valid if sharp gradients exist initially
at the boundary of the hot gas region, ie.
“close” to the interface, the proper charac-
teristic length is the local distance from the
interface in contrast to the overall dimension
of the hot region R4. The local “flow” time, ¢,,
near an interface, x = 1, is

R t
mx— R o (26
b=lx-tlgt=lx-12t @9

t Settingx, = T *and a,, = a,, = 1.
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Hence when

x =1+ 0(Bo) 2n
t, and t, will be of identical order, and this
occurs in a region of nonuniformity which is
very small.

Consequently, close to the interface we are
led to introduce a new (stretched) spatial
variable

& =[x — x{t)]/Bo (28)

where x(t) is the (foreseen) trajectory of a

(shock) discontinuity imbedded inside the inner

region. Within the framework of =1, <
(R,/ay)

xdt) = 1 + Bo x,,(t) + 0(Bo?) 29)

and thus equation (28) implies |¢| ~ O(1) in
accordance with equation (27). After transform-
ing from an (x, £) to a (&, t) description, we may
again expand the dependent variables in powers
of Bo as in equation (12).

Consider now the initial conditions. Att = 0,
the entire inner region collapses into the single
point x = 1. This suggests a conical solution
near t = 0, and hence the utility of introducing

0=¢n (30)

The final form of the lowest order governing
equations written in their characteristic forms
are now (omitting the superscript zero for
simplicity):

Along
0 u—X%, —0
T (1)
Tdp dT
- - );“d—t + T
- - Ypf(4a,,T4 —0,G). (32
Along
0 u—-%, -0+ T
Frie ; (33a,b)
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\/po du
yp dt  dr —

tar
7/ T dt

\/T(4tx Tt — a, G) =0 (34a.b)
0q 0G
W= 0 (35)

Thus the radiation field is not attenuated
within this region. Simply, to this order the
inner solution represents a flow with local
heat addition (subtraction). The global de-
pendence part of the radiation field, G, is
prescribed solely by the outer solution. Thus
with G uniform across the inner region and
determined by the outer problem for all time.
the governing equations (31)-(34b) may b
solved by the method of characteristics.

However, in view of the complexity of the
flow some method to render the problem
tractable analytically is preferable to a strict
application of the method of characteristics.

It can be shown [13] that for ¢t <1 the
radiation effects are relatively small. Physically,
the picture is that of a conical flow perturbed
by radiation for such small times. Let us intro-
duce the isentropic speed of sound a = /T and
consider a time perturbation ¢ ~ O(g) where
¢ < 1. Introduce also a “‘stretched” time

{=tfe (36)

such that { ~ 0(1). Now consider an expansion
of the dependent variables

f=19%0.0 + of V6.0 + 0e?)

where f represents p, u or a. Similarly, both the
shock and the contact surface velocity expres-
sions are expanded as

37

%, (0) = %0 + efx{V (38)

X, () = X + gLz (39)
Here the x? and x{ (i = 0, 1) are constants to
be determined from equations (31)+34) and
x,,(t) and X, (1) are obtained by differentiation
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from the positions of the shock and the contact
surface

x{t) = 1 + Bo x,,(1) {40)

x{t) =1+ Bo x,, (1), 41
Substituting equations (37)39) into (31)(34b)
and equating terms of identical powers in
¢, results to the lowest order in the classical
solution of a planar adiabatic shock tube. The
shock velocity x( is governed by

o(0)2 _
_ {1 N 2y (X! Tw>
Y+ 1 T, )

v —1 )'Cgo)2 — Too 2y/(y+ 1)
X{l_vﬂ ® (42)

which may be solved numerically, for example,
by Newton’s method of successive approxima-
tions.

To the next order, we obtain

a(O’
- y);mdp“’ + 2da"

d¢ df _

T 0 g @ -
(43)

d¢ do

Fa -y

©)
+ 2 dp® + du® + %da‘“

(44)

= )
+

where

(0)
f(l) = (V )dp { 0) [H(U x(sl)C]

(1) (0) (1)
a ap .
+ 5~ o WO - %0 - 9)}
p p
da iyt
— At D S A
[ s C] de p(O)a(O)

x [40a®" — 9G]
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and
1dp@(a©@ )
F g ), [~ H + ]
a  q@pw
+ W - p(0)2
x (u® —x® _ ¢+ a(°’)}
(12) = d 249
S PG DINT ¢ VRN ' ) Wl I ) Bt
{u XU+ }dﬂ[ S
_ CT R
4+ W {4(2;0)0(0) — azf,‘;’G}.

The characteristic directions are determined
by the zeroth order quantities. As a result,
within the time scale ¢ ~ (1), the discontinuity
in slope at the tail of the expansion fan (0z;)
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does not develop into a shock wave. A similar
conclusion for the radiation-free case has been
found by McFadden [22]: no secondary shock
originates at 6z, in a nonplanar geometry. This
is clearly invalid for { ~ 0 (1/¢) [23, 24] which
has not been considered here.

In view of the simple (uniform) base solutions
everywhere except in the expansion region,
closed form solutions are obtained by the
characteristics method. Crudest numerical ap-
proximation (without iteration) has been used
in the expansion region. The detailed form of
the solutions are included in [13].

RESULTS AND DISCUSSION
Five major parameters characterize the prob-
lem, namely y (= 1-33 here), 1, j, the ratio of the
ambient to the initial core temperature, and a

— Gray Gos
——— Semigray Gas
—-.—-- Trougott's Model
To= 7x 10 °K

T=4

J=0

r=1.33

Too= 3x102°k

{1 Pts Inside and |iPts
Outside the Fireball

X 100

107!

T(17=0)-Tw
T

-2

To = 106°K

10
1072

i0-! |
t

Fi6. 2 Effects of Bouguer number, core temperature and gas model on the interface
upstream heating level (planar cases).
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characteristic describing the gas model. Since
a fixed ambient temperature (300°K) was used,
variations in the ratio of the ambient to the
initial core temperature indicate changes in the
latter, which in turn affects the Boltzmann
number and the characteristic time ¢,.

Shown in Fig. 2 is the precursor heating
effect on the gas immediately upstream of the
interface for a planar case. Due to the absence
of a curvature effect, the planar case serves as
an upper bound on the upstream heating level
for all three geometries considered. It is clear
that the effect of nongreyness, Bouguer number
and core temperature are considerable but the
overall upstream heating effect remains negli-
gible. Therefore, within the time scale associated
with a radiation dominant interaction the
assumption of a umniform upstream tempera-
ture does indeed appear to be a reasonable
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approximation. Some caution must be exercised
since this slow initial upstream heating rate
may eventually change due to the nonlinear
dependence uf «, on T. Nevertheless, this does
supply further justification for the strong shock
approximation employed by Taylor [2].

Figure 3 displays the distributions of the
heat flux in time. It is clear that nonplanar
cases possess shorter characteristic times than
does the planar case, consistent with intuition
based upon the larger ratio of surface area to
volume for the former. Note that g forj =1 is
the largest. However, since the ratio of surface
area to volume is equal to (j + 1) per unmit
radius (semi-thickness), the energy left in the
core will decrease most rapidly for j = 2, as
one might expect (see below).

In Fig. 4 are shown the effects on the radiative
flux g at the interface x = 1. Due to the stronger

.\ 1 | 1 ! I I i !
[ aw —
\ JsO , 1 Pts
\' e Jz) 21Pts
12 b— \-\ e J22, 21 Pis —
\ .
\'\ Yy =133
1.0 \ To= 108°K -
\ Grey Gos

No Upstream Absorption

F16. 3. Geometrical effect on heat flux at t = L
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25 | | | l [ |
Grey Gas
_____{Semigrey Gas
Traugott's Model
20 — ]

q(x=h

y=1.33
To= 7x109°K
J=0

Fi1G. 4. Effect of Bouguer number and nongrey gas model on the temporal behavior
of the interface heat flux.

interior blocking effect for an optically thicker
gas (larger 7), only a thin layer of thickness
~ O(1/r) near the interface is cooled signifi-
cantly. This results in a shorter characteristic
time than those applicable for smaller . For
7 <€ 1, the entire volume participates in the
cooling process but the rate of cooling is quite
small. Furthermore, for the absorption co-
efficients model used here, both nongrey repre-
sentations give practically the same temporal
behavior of the heat flux. For 7 = 1 it is seen
that allowance for nongreyness implies stronger
radiation, but the qualitative trend remains the
same. _
Figures 5 and 6 depict the radiation induced
velocity for different gas models and geometries.
In our model u = Bo.u'". Due to a rather
negligible upstream heating, 4 proves to be
independent of the core temperature (ie. Bo),
and as a result of the less uniform cooling proves
to be larger for optically thick and nonplanar

cases. The apparent nongrey effect again proves
to behave qualitatively in quite the same way
as the grey.

Of some interest is the energy E denoting the
percentage of energy left in the core

E=(G+ 1)}Txidx
0
=1— 9+ l)iq(l,t)dt 45)

the latter following from the energy equation,
and physically simply expressing the initial
energy minus that radiated away. From Fig. 7
it is clear that:

1. For an optically thin gas. E is virtually
linear in ¢ as a result of the slow rate of change
of ¢(1, 1) (Fig. 4).

2. Because of the lesser blocking effect, E
decreases to lower levels for nonplanar cases.
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FiG. 5. Geometrical effect on the radiation induced velocity at t = 1.

3. Two numerical approximations, utilizing
either 11 or 21 points inside the hot gas core,
give good agreement with one another and
furnish some indication of the reliability of the
method.

4. Due to the negligible upstream heating
(Fig. 2) the precursor effects have little influence
on the prediction of E.

5. At a fixed ¢, as 1 increases initially from
small to intermediate values, E drops to a lower
level because of the stronger emission effect.

However, with increasing thickness the interior
blocking confines the cooling process to a thin
layer ~ 0(1/7) near the interface, and the final
E “‘asymptote’ is above the minimum.

Figure 8 depicts again the curvature effect
at t = 1, which is more pronounced than for
7 = 01 (Fig. 7). The higher flux for a nongrey
gas implies lesser E values.

Recall that the inner problem consists of a
similarity solution of the shock tube type
perturbed by radiation. Forairat T = 7 » 10°
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F1G. 6. The radiation induced velocity at the interface: Bouguer number and
gas model effects.

and 10%°K, x© = 0-639 and x® = 0-548 while
XV and %! can be of either sign. Figure 9
shows the effect of radiation on the pressure
profile. For =2 (j = 1), the shock layer is
sufficiently thick to absorb more energy than
is emitted away. For t =05 (j = 1 or 2), on
the other hand, the shock layer is sufficiently
thin that emission dominates. The result is a
pressure increase (decrease) in the shock layer
for the thicker (thinner) case. Due to the lower
ability to absorb radiation when j = 2, the

pressure drop is greater. Within the expansion
fan the pressure decreases with time due to the
continual loss of energy but due to the much
higher temperature levels of the “‘driver” gas
the drop for both cylindrical and spherical
cases proves to be almost identical. Since the
thin layer is far from radiative equilibrium, the
thicker gas involves a larger pressure drop.
Due to energy addition (removal), the shock
layer actually expands (contracts). There results
an accelerating (declerating) shock wave while
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simultaneously the contact surface is retarded
(accelerated). A similar situation has been
noted by Magee and Hirschfelder [25] in that
the blast (shock) wave is strengthened due to
the presence of NO, (strong radiation absorbing

KUEI-YUAN CHIEN

approximation, the difference between the ap-
proximate and the exact formulations is expected
to be small when close to emission dominance.
Due to the rather low shock layer temperature
(as compared to the driver gas) obtained from

o I =
L 462 -628 @J:=1,T:2 T = 7x10°
=31 330 04J:=1,7=05 +-10°2
o 372 400 [ 4=2,7:05 y - 133
Grey Gas
a = ]
6 — ]
. °
[ ]
@
L 8|
s = ]
Exp Exp. Contact
Head Tail Surface]
o LI l
Shock
-5 -10 -0.5% o]

8

F1G. 9. Pressure distribution in the inner region: Geometric and Bouguer number
effects.

gas) near the periphery at the later stage of an
explosion (t ~ 1077 s).

A comparison of x" as predicted by both
the differential approximation and an exact
solution for the planar, grey case is presented in
Fig. 10, and shows the ratio to be about 0-4 at
t = 1072, Since it is the absorption term that
is approximated by means of the differential

the shock tube solution (0-0664), the shock
layer is emission dominated only for t & 1077
and the ratio of x!! predicted by the two
methods does approach unity at such low values.
However, the continuum approach may be
justified only for 7> 1072 For 7>107?
(j = 0) the shock layer is locally absorbing
more energy (from the much hotter driver gas)
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than is being emitted away. Thus this is essenti-
ally a comparison of the mean intensity G.
Overall, then a discrepancy of about two exists
towards the optically thin end, and a vanishingly
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of the core which resuits in a negligible energy
loss and permits similarity to be assumed.

On the other hand, in the experiment con-
ducted by Daiber and Thompson [3] the gas

10 T I
Yy =1.33
To= 7x105°K
J:=0
Grey Gas
S
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~ | o (o] (o] (o] -0
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FiG. 10. Comparison of differential approximation and exact solution results for the radiation induced shock
wave acceleration (planar case, grey gas).

small error for ¢ > 1. Similar conclusions have
been reported by Kulander [26].

CONCLUDING REMARKS

We may consider the physical phenomena
responsible for the earlier observed results
mentioned in the introduction. As shown earlier
(Fig. 2), the extrapolated upstream heating level
for the present time scale is negligible when
compared to that of the hot core. Furthermore,
for the experimental example considered by
Taylor in his blast wave analysis, the gas
proves to be optically thick (z ~ 103). Thus
it is the strong blocking effect in the interior

was optically thin; for such an emission
dominated ionized gas region a considerable
amount of energy is lost by radiation and
similarity fails. A detailed evaluation of the
properties within such an ionized region im-
mediately after the laser cut-off is beyond the
present analysis. However, we may estimate the
mean properties existing in such a “blob” of
hot gas. Iteration (equilibrium air, y = 1-33)
results in a hot core temperature of ~ 65 x
10°°K based on the radiation supported deto-
nation wave theory proposed originally by
Ramsden and Savic [27] (see also [1], Chap-
ter 5). Alternatively, a constant volume heat-
ing model results in a mean temperature of
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65 x 10°°K. The agreement is viewed as
some evidence for the formation of a “fireball”
due to the optical breakdown of air. A similar
discovery of a “fireball’ behavior existing in a
laser product micro-explosion has also been
found by Askaryan et al. [28].

If the location of the luminous fronts at the
laser-off time ¢, is x,, then experimental cor-
relation [3] gives (x/x,) = (t/to)¥ with N = 0-21.
For times sufficiently near t,, for which the
present radiation perturbed inner solution is
valid, this can be expanded to allow a direct
comparison with the shock wave trajectory, i.e.

Nt
" Bo to

x(l) - N(N — 1) <£*—)2
* Bo to

From the definition of r,, equation {11), and
identification of x, with R, we obtain

0 = N(R*)
A, lg

R 2
# = N(N — 1)130( e ) (49)
dglo

(0}

s

(46)

(47)

(48)

Clearly in the above relations, R, and t,
are experimentally determined, whereas a, and
Bo are calculated from the experimental condi-
tions. To generalize the calculation, we make
use of the radiation supported detonation wave
theory, in which, R,/t, is related to the velocity
of the “shock” at ty, Do, by R /ty = ¢,D, where
¢, = 1'67. Furthermore, since the theory im-

plies Do/ay = (y + 1)/7, then
X0 = ¢, (———" ’; I)N (50)
g+ 1
M = N(N — 1)Bo (” + ) (51)
1

With N = 021, T, = 7 x 10°°K and y = 1:33,
the experimentally observed values are x{” =

KUEI-YUAN CHEIN

0-61 and %" = —0:087%, which may be com-
pared with the “shock tube” theory result,
x® = 064. From the harmonic model [19]
fora, R ~ 0-4cm correspondstot ~ 3 x 1073
and results in XY = —0023. However, the
harmonic model differs from the available data
by anywhere from three to one orders of
magnitude. For 1 =3 x 1072 x{Y = —~023;
and for r = 1072: %V = —0075. The above
calculations are for j = 1 and 2 and virtually all
gas models. Note that for nonplanar geometries,
G(l,1)=< 1 follows from equations (20) and
(21), which utilizes the equilibrium condition at
x — oo, equations (18b, c).

In view of the asymmetries existing in the
experiment, consideration of a reduction of
R, by a factor of one-half brings the upper
bound to t = 15 x 1072, corresponding to
—011

In view of uncertainties in the “initial”
conditions at t = t, as well as assumptions made
herein, the experiment of Daiber and Thompson
appears consistent with the present model
taking t ~ 102 Physically, due to the extremely
low ability to absorb radiation, the shock layer
is cooled by the local {dominant) emission
process and results in a decelerating shock wave

) =
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Résumé—Linteraction entre un champ de rayonnement dominant et un champ d’écoulement est étudée,
Iéchelle des temps pour une telle interaction instationnaire pouvant étre trés courte par rapport 4 un temps
“d’écoulement” caractéristique. A I’ordre le moins élevé, il se produit un processus de refroidissement par
rayonnement avec un écoulement non couplé, et un développement en nombre de Boltzmann introduit
systématiquement des effets d’ordre plus élevé. Un schéma de développement asymptotique raccordé
est nécessaire étant donné les longueurs caractéristiques disparates qui existent dans différentes régions
spatiales. Les résultats sont présentés dans I'exemple spécifique de 1'addition instantanée d’énergie a
une région finie avec une symétrie unidimensionnelle (c’est-a-dire, plane, cylindrique et sphérique).

Pour simplifier, le gaz est supposé non visqueux, parafait et en équilibre thermodynamique logal, et
I'approximation différentielle est employée pour le champ de rayonnement. Un schéma numérique a été
élaboré pour éviter des itérations qui prennent du temps et les résultats sont comparés a ceux d’une solution
analytique restreinte au cas linéaire. Les approximations d’un gas non gris et les effets d’absorption amont
sont comprises. Les résultats indiquent un niveau de chauffage amont négligeable, des effets modérés de
I’hypothése d’un gaz non gris, mais des effets fmportants de la courbure et de I’épaisseur optique. Selon le
bilan local entre I’émission et 1’absorption, le choc d’explosion peut étre soit accéléré soit décéléré. Enfin,
on compare I’approximation différentielle et les formulations exactes pour un cas gris plan. L’excellent
accord entre I travail actuel et une expérience avec un laser permet de conclure a la possibilité du couplage

d’énergie.
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Zusammenfassung— Es wird die Wechselwirkung zwischen einem starken Strahlungsfeld und einem
Stromungsfeld untersucht, wobei das Zeitmass fiir solch eine nichtstationdre Wechselwirkung sehr kurz
sein moge im Vergleich zu einer charakteristischen Stromungszeit. In erster Niherung ergibt sich ein
Kiihlungsprozess durch Strahlung mit einer unbeeinflussten Strémung, une eine Ausdehnung auf die
Boltzmann-Zahl fiihrt dann systematisch Effekte hoherer Ordnung ein. Es wird ein angepasstes asyme-
trisches Expansionsschema gefordert, angesichts der unterschiedlichen charakteristischen Lingen in
den verschiedenen Zonen. Dabei werden Ergebnisse angegeben fiir den speziellen Fall einer plotzlichen
Energiezufuhr in einer endlichen Zone mit eindimensionaler Symmetrie (d.h. ebene Zylinder- oder Kugel-
symmetrie). Zur Vereinfachung wird das Gas als reibungsfrei, als vollkommen und im thermodynamischen
Gleichgewicht angenommen. Es wird weiterhin die differenticlle Approximation fiir das Strahlungsfeld
benutzt. Es wird ein numerisches Schema entwickelt, um zeitraubende Iterationen zu vermeiden. Die
Ergebnisse wurden verglichen mit jenen aus einer analytischen Ldsung, die allerdings auf den linearen
Fall beschriankt war. Dabei sind sowohl die nichtgrauen Niherungen als auch die Effekte der Absorption
stromaufwirts beriicksichtigt. Die Ergebnisse zeigen eine vernachldssigbare Aufheizung stroaufwirts
missige Effekte des nichtgrauen Gases, aber grosse Auswirkung der Kriimmung und der optischen Dicke.
In Abhéngigkeit vom lokalen Gleichgewicht zwischen Emission und Absorption, kann der Stoss entweder
beschleunigt oder verzogert werden. Schliesslich wurde ein Vergleich zwischen der differentiellen Ap-
proximation und den exakten Formeln fiir den ebenen Fall in cinem grauen Medium durchgefiihrt. Die
ausgezeichnete Ubereinstimmung zwischen der Arbeit und einem Laser-Experiment zeigt, dass auf
mbgliche Energie-Koppelung geschlossen werden muss.

Annoranua—MccnexyeTca B3aMMOJENCTBHE OCHOBHOI'O JIYYHCTOTO HOJIA ¢ 11051eM [IOTOKA,
KOTJa MacmTal BpeMeHH AJIA HeCTALUMOHAPHOIO B3AUMOXEACTBUA OYEHD MAJ 110 CPABHEHUIO €
BPMEHHON XapaKTepHCTHRON ‘‘noToxa”™. B nepBoM npubImKeHMM YYNTEIBAETCH Jy4HCTOE
OXNasKAeHNe OTPRIBHOTO MOTOKE, & yBeJUYeHES YHCNa BOAbIMAaHA CHCTEMATHIECKH IPUBOIUT
& ahheRTaM BHCHIHX TOPAAKOB. Tar KaK XaparTepUCTHYECKAE ATUNE PA3ANYHEIX YHACTKOR
IPOCTPAHCTBA HECOUBMepMMH, Tpebyercs crenuuyeckad acCHMIITOTHYECHAS CXeMa pacuin-
perus. IIpuBogATCA pesyasTaThl AIA YACTHOIO CJIydask MI'HOBEHHOIU IIOTOKA DHEPTHH K
OrpaHMYeHHON cuMMerpHuHOW ofnacru (macruwa, nmauHap, chepa). lua mpocrorer ran
CYMTAIOT HEBABKUM, WMICANbHHM M HaXOJAIMMCH B JIOKAJNBHOM TEPMOAMHAMUHYECHOM
PaBHOBECHN ; JYyYUCTOC HOJE ONUCBIBAETCA ANIPOKCIIMUPOBAHHBIMIL ,zmd)(i)epeuunaﬂbﬂmmx
ypasuenuAmy. Bo usfemanue noOpTopeHmil pacyera paspaboTana UMCIeHHAH CXeMa, &
PE3yNLTATH CPABHUBAITCA ¢ AHAMMTUYECKHM DeNIeHHeM RIA JUHeNHOro cayuas. B aagaue
VUMTHBASTCH ANNPOKCHMATMA VA HeCePHX rasos U GHeKTH NOTIOWEHAA BBEPX HO HOTOKY.
(OKasanoch, 4T0 HAIpEB BBEPX 10 NMOTOKRY mpeHeGpeuMo mMam, a Hanbombuiee wo3gelicTBue
OHAa3BBAKT KPUBHU3HA U ONTHYLCKAA TOJINUHA. B 3apucuMOCTH OT JIOKAJIBHOTO CUOTHOIIEHH
AMACCHHA W HOTJIOIEHNSA, MOKHO YCKOPUThL UIIH BATOPMOBUTD YAAPHYIO BOJHY . B sarioueHuu
CPABHMBAETCH NPUHATAS ANIPORCHMAIIMA ¢ TOUHBIM PENISHMEM [(JIH CIYYad 1OCKOTO Cepor:
tena. BemukoyienHOe COOTBETCTBHE MEMIY NMONYYSHHBIMU Pe3ylIbTaTaMH I DRCIEPUMEHTAMH
¢ JIa3epOM TIOSBOJIALT CIENATh BHEBOMN O CYIMIECTBOBAHUU DHEPreTHiecHON eBA3M,



